Harnessing Large-Scale Quantum Calculations for Predicting Material and Chemical Properties

Anshuman Kumar

Ph.D., Materials Science and Engineering University of California Riverside

November 08, 2023

Contents

- Background and Motivation
- Project Description and Objectives
- DFT and DFTB
- Results
- Conclusion
- Publications

Background and Motivation

Puchala, B., & van der Ven, A. (2013). *Physical Review B, 88*(9), 094108 Huran, A. W., et al. (2020). *Physica Status Solidi*, 14(6), 2881–2888 Sevgen, E., et al. (2018). *Journal of Chemical Theory and Computation*, 14(6), 2881–2888 Li, Y. & Marzari, N., et al. (2011).*ACS Nano*, *9726-9736* Teichert, G., et al. (2021).*arXiv preprint*, *2104*(08318)

Background and Motivation

Puchala, B., & van der Ven, A. (2013). *Physical Review B, 88*(9), 094108 Huran, A. W., et al. (2020).*Physica Status Solidi*, 14(6), 2881–2888 Sevgen, E., et al. (2018).*Journal of Chemical Theory and Computation*, 14(6), 2881–2888 Li, Y. & Marzari, N., et al. (2011).*ACS Nano*, *9726-9736* Teichert, G., et al. (2021).*arXiv preprint*, *2104*(08318)

Background and Motivation

Puchala, B., & van der Ven, A. (2013). *Physical Review B, 88*(9), 094108 Huran, A. W., et al. (2020).*Physica Status Solidi, 14*(6), 2881–2888 Sevgen, E., et al. (2018).*Journal of Chemical Theory and Computation, 14*(6), 2881–2888 Li, Y. & Marzari, N., et al. (2011).*ACS Nano*, *9726-9736* Teichert, G., et al. (2021).*arXiv preprint*, *2104*(08318)

Research Projects

Calculate the transport properties of Carbon Nanotubes

DFT+NEGF

Dopant atoms vs inter/intra conductivity

Efficient calculation of formation energies and convex hull

Large scale Metadynamics calculations

Chen, M., Li, W., **Kumar, A**., Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). *ACS Applied Materials & Interfaces*, *11*(21), 19315–19323 **Kumar, A**., Ali, Z. A., & Wong, B. M. (2023). *Journal of Materials Science & Technology*, *141*, 236–244 **Kumar, A**. et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. *Molecules*, *28*, 1277–1297

Research Projects

Calculate the transport properties of Carbon Nanotubes

DFT+NEGF

Dopant atoms vs inter/intra conductivity

Efficient calculation of formation energies and convex hull

Large scale Metadynamics calculations

Chen, M., Li, W., **Kumar, A.**, Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). *ACS Applied Materials & Interfaces, 11*(21), 19315–19323 **Kumar, A.**, Ali, Z. A., & Wong, B. M. (2023). *Journal of Materials Science & Technology, 141,* 236–244 **Kumar, A.** et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. *Molecules, 28,* 1277–1297

Research Projects

Calculate the transport properties of Carbon Nanotubes

DFT+NEGF

Dopant atoms vs inter/intra conductivity

Efficient calculation of formation energies and convex hull

Large scale Metadynamics calculations

Chen, M., Li, W., Kumar, A., Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). ACS Applied Materials & Interfaces, 11(21), 19315–19323 Kumar, A., Ali, Z. A., & Wong, B. M. (2023). Journal of Materials Science & Technology, 141, 236–244 Kumar, A. et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. *Molecules, 28*, 1277–1297

Born-Oppenheimer Approximation

$$\Psi_{total}(\vec{r},\vec{R}) = \Psi_{el}(\vec{r},\vec{R}) \Psi_N(\vec{R})$$
^[1]

Electronic Schrodinger Equation

$$\widehat{H}_{el}\Psi_{el}(\vec{r},\vec{R}) = E_{el}\Psi_{el}(\vec{r},\vec{R})$$
^[2]

DFT Introduction (brief)

$$E[n] = T[n] + E_{ext}[n] + E_{H}[n] + E_{xc}[n]$$
^[3]

$$T = \sum_{i} \int \psi_{i}^{*} \nabla^{2} \psi_{i} dr \qquad E_{ext} = \int V_{ext}(\vec{r}) n(\vec{r}) d^{3}r \qquad E_{H} = \frac{1}{2} \iint \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3}r d^{3}r'$$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{ext}[n](\vec{r}) + V_H[n](\vec{r}) + V_{XC}[n](\vec{r})\right]\psi_i(\vec{r}) = \epsilon_i\psi_i(\vec{r})$$
^[4]

$$V_{H}(\vec{r}) = \int \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} d^{3} r' \quad V_{xc}(\vec{r}) = \frac{\delta E_{xc}[n]}{\delta n(\vec{r})}$$

$$n(\vec{r}) = \sum_{i}^{N} |\psi_{i}(\vec{r})|^{2}$$

Self Consistent Field (SCF) Procedure

Can we enhance transport in aligned CNT?

Transport properties of doped CNT

current flow with Li and Cr atoms in CNT

Transport properties of doped CNT

Transmission

Density of States

High DOS with Cr doping

Chen, M., Li, W., Kumar, A., Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 11(21), 19315–19323

Conductance

$$G = \frac{2e^2}{h} \int_{-\infty}^{\infty} T(E) \left\{ -\frac{\partial f(E)}{\partial E} \right\} dE$$

	SWNT + Cr (S)	SWNT + Li (S)
Intra	1.75 x 10⁻⁵	1.52 x 10 ⁻⁴
Inter	2.05 x 10⁻⁵	1.75 x 10 ⁻⁷

Charge Analysis

- Li transfers 0.175 e- to SWNT
- For Cr charge transfer is negligible (0.091 e⁻)

17

Electron Density

Cr orbitals hybridization forms conducting channel

Chen, M., Li, W., Kumar, A., Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 11(21), 19315–19323

NEGF (brief)

$$\left[E\mathbb{I} - \mathbf{H}_D - \Sigma^R\right]\mathbf{G}^R = \mathbb{I}$$

$$T(E) = Tr\left[\mathbf{\Gamma}_{L}\mathbf{G}^{R}\mathbf{\Gamma}_{R}\mathbf{G}^{A}\right] \qquad \mathbf{G}^{A} = \mathbf{G}^{R\dagger}$$

$$\Gamma = i \left(\Sigma^R - \Sigma^A \right) \qquad \qquad \Sigma^A = \Sigma^{R^\dagger}$$

$$G = \frac{2e^2}{h} \int_{-\infty}^{\infty} T(E) \left\{ -\frac{\partial f(E)}{\partial E} \right\} dE$$

Perform DFT with PBC to obtain device Hamiltonian and self-energy

FHI-aims

- All-electron, full-potential code, uses numeric atom-centered basis
- Enables accurate treatment of all electrons in the same footing without relying on pseudopotentials

20

- Geometry relaxation (force tol. = 10⁻⁴ eV/A)
- DFT to fetch self energy
- Input geometry for Transport calculations (left lead + device + right lead)
- Device Hamiltonian and self energies used in T(E)
- PBE with vdW interaction

Key Findings

dopants affects directional transport in SWCNTs

 Covalent bond formed by Cr increases the Intertube conductivity

• Li mostly affects the conductivity along the CNT

21

DFTB

Why DFTB ?

- DFT good for small systems.
- Classical methods does not consider quantum nature of chemical systems.
- DFTB extremely fast for large systems
- Parameterized DFT with atom-centered basis functions

Why DFTB?

DFTB 1-2 orders of magnitude faster than DFT

Kumar, A., Ali, Z. A., & Wong, B. M. (2023). Efficient Predictions of Formation Energies and Convex Hulls from Density Functional Tight Binding Calculations. Journal of Materials Science & Technology, 141, 236–244 Kumar, A. et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. Molecules, 28, 1277–1297

DFTB Theory (brief)

$$E_{DFTB} = \sum_{i}^{occ} \langle \phi_i | \hat{H}_0 | \phi_i \rangle + \frac{1}{2} \sum_{\alpha,\beta}^{N} \gamma_{\alpha\beta} \Delta q_\alpha \Delta q_\beta + E_{rep}$$
Non-SCC H
(Parameterized)
Long-range electrostatic short-range repulsion

 \widehat{H}_0 parametrized to account for core and valence electrons

 $\gamma_{\alpha\beta}$ depends on charge fluctuation and separation of atoms

 E_{rep} approximates many-body effects (e.g., exchange - correlation)

$$\widehat{H}_{DFTB} = \langle \phi_{\mu} | \widehat{H}_{0} | \phi_{\nu} \rangle + \frac{1}{2} S_{\mu\nu} \sum_{X} (\gamma_{\alpha X} + \gamma_{\beta X}) \Delta q_{X}$$

$$\hat{H}_0 = -\frac{1}{2}\nabla^2 + \nu_{eff}[\rho^{\alpha}(\boldsymbol{r})] + \nu_{eff}[\rho^{\beta}(\boldsymbol{r})]$$

• Hamiltonian solved self-consistently

24

Hamiltonian and overlap matrix elements are pretabulated

Kumar, A., Ali, Z. A., & Wong, B. M. (2023). Efficient Predictions of Formation Energies and Convex Hulls from Density Functional Tight Binding Calculations. *Journal of Materials Science & Technology*, 141, 236–244 Kumar, A. et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. *Molecules*, 28, 1277–1297

Can we find stable structures of alloys efficiently?

Research Statement

ZnO and SiC unit cell

CASM+DFTB

CASM: cluster approach of statistical mechanics

Results: Convex Hull

• SiC shows convex hull; minima lying nearly the same concentration

Convex Hull

• DFT and DFTB gives similar results

DFTB Efficiency

• Time/SCF very less for DFTB

30

DFTB Efficiency

• DFTB with ZnO is more efficient

DFTB Efficiency

• DFTB with ZnO is more efficient

- Integrated DFTB with CASM
- DFTB as an efficient tool for screening

Can we accelerate ab initio Metadynamics?

Metadynamics- Motivation

- Molecular Dynamics and rare events
- Chemical Reactions and conformation changes can take longer
 - Protein/RNA folding (µs-s); reaction pathways (ns)

Methods for Faster Molecular Dynamics

• Enhanced Sampling technique: Metadynamics

• DFTB instead of DFT

• Use accelerated hardware: GPUs

Metadynamics (brief)

- Collective Variables (CV) for analyzing and biasing MD simulations
 - Function of atomic coordinates
 - Distances, angles, RMSD

• Biasing to accelerate events

$$= \sum_{t'=\tau, 2\tau, ...}^{t} \omega e^{-V(s,t')} \exp\left[\frac{-[s-s(t')]^2}{2\sigma^2}\right]$$

CV

$$V(s,t \to \infty) = -F(s) + C$$

 V_{R}

CV

CV

DFTB+GPU

Solve the eigenvalue by diagonalizing the Hamiltonian

$$\widehat{H}\psi = E\psi$$

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

Matrix with eigenvalues on diagonal

3 Eigensolvers in DFTB+

- QR
- DivideAndConquer
- RelativelyRobust

MAGMA GPU-ACCELERATED MICROSOFT AZURE

MAGMA

- Linear algebra library like LAPACK
- Used for hybrid "multi-core + GPU" architecture

Implementation in DFTB+

DSYGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

• Use GPU to accelerate matrix-vector product

DFTB Accuracy

Free Energy Surface of ADP

- DFTB and PBEO predicts metastable structure at nearly the same locations
- DFTB ~ 18 hours; PBE0 ~32 days

Kumar, A. et al (2023). GPU-Enhanced DFTB Metadynamics for efficiently Predicting Free Energies of Biochemical Systems. *Molecules, 28,* 1277–1297 Sevgen, E.; Giberti, F.; Sidky, H.; Whitmer, J. K.; Galli, G.; Gygi, F.; de Pablo, J. J. *Journal of Chemical Theory and Computation* **2018**,14, 2881–288

DFTB Accuracy

- DFTB and Amber-ff19sb predicts different minima
- DFT hybrid calculations shows energy of C < A

Results: DFTB Efficiency

• DFTB is 2 orders of magnitude faster than DFT

• DFTB is more accurate than classical calculations

• GPU+DFTB is 2 orders of magnitude faster than DFT

Conclusion

- Used DFT to characterize transport properties of doped CNT
- Interfaced CASM with DFTB for accelerated calculation of convex hull and formation energies
- Extended GPU-DFTB for obtaining quantum free energy surfaces and transition path
- GPU-DFTB is powerful tool for material science, physics, and chemistry.

List of Publications

- 1. Chen, M., Li, W., Kumar, A., Li, G., Itkis, M., Wong, B., & Bekyarova, E. (2019). Covalent Atomic Bridges Enable Unidirectional Enhancement of Electronic Transport in Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 11(21), 19315–19323.
- 2. Kumar, A., Ali, Z. A., & Wong, B. M. (2023). Efficient Predictions of Formation Energies and Convex Hulls from Density Functional Tight Binding Calculations. Journal of Materials Science & Technology, 141, 236–244
- 3. Kumar, A. et al (2023). GPU-Enhanced DFTB Metadynamics for Efficiently Predicting Free Energies of Biochemical Systems. Molecules, 28, 1277–1297.
- 4. Kumar, A., Schweitzer-Stenner, R., & Wong, B. M. (2019). A new interpretation of the structure and solvent dependence of the far UV circular dichroism spectrum of short oligopeptides. *Chemical Communications*, *55*(40), 5701–5704
- 5. Kumar, A., Toal, S., DiGuiseppi, D., Schweitzer-Stenner, R., & Wong, B. (2020). Water-Mediated Electronic Structure of Oligopeptides Probed by Their UV Circular Dichroism, Absorption Spectra, and Time-Dependent DFT Calculations. *The Journal of Physical Chemistry B*, 124(13), 2579–2590.
- 6. Kumar, A., Wang, X., Shelton, C. R., & Wong, B. M. (2020). Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of timedependent optimal control fields. *Phys. Chem. Chem. Phys.*, 22(40), 22889–22899.
- 7. Xu, L., Kumar, A., & Wong, B. M. (2018). Linear polarizabilities and second hyperpolarizabilities of streptocyanines: Results from broken-Symmetry DFT and new CCSD(T) benchmarks. *Journal of Computational Chemistry*, *39*(28), 2350–2359
- 8. Kwon., H., Kumar, A., & Wong, B. M. (2023). Electron/Hole Mobilities of Periodic DNA and Nucelobase Structures from Large-Scale DFTB Calculations, *The Journal of Physical Chemistry B*, 2023.
- 9. Wang, X., Okyay, M. S., Kumar, A., and Wong, B. M. (2023). Accelerating quantum optimal control of multi-qubit systems with symmetry-based Hamiltonian transformations. AVS Quantum Science, 5 (4).
- 10. Raza, A., Hong, C., Wang, X., Kumar, A., Shelton, C. R., & Wong, B. M. (2021). NIC-CAGE: An open-source software package for predicting optimal control fields in photo-excited chemical systems. *Computer Physics Communications*, 258, 107541.
- 11. Joo, Y., Huang, L., Eedugurala, N., London, A. E., Kumar, A., Wong, B. M., Boudouris, B. W., & Azoulay, J. D. (2018). Thermoelectric Performance of an Open-Shell Donor–Acceptor Conjugated Polymer Doped with a Radical-Containing Small Molecule. *Macromolecules, 51(10), 3886–3894*.

46

Acknowledgements

Advisor:

Prof. Bryan M. Wong

Collaborators: Haddon's Group Palermo's Lab Prof. Christian Shelton Prof. Reinhard Schweitzer-Stenner

Wong's Group Members

