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a b s t r a c t 

Defects in materials significantly alter their electronic and structural properties, which affect the per- 

formance of electronic devices, structural alloys, and functional materials. However, calculating all the 

possible defects in complex materials with conventional Density Functional Theory (DFT) can be compu- 

tationally prohibitive. To enhance the efficiency of these calculations, we interfaced Density Functional 

Tight Binding (DFTB) with the Clusters Approach to Statistical Mechanics (CASM) software package for 

the first time. Using SiC and ZnO as representative examples, we show that DFTB gives accurate results 

and can be used as an efficient computational approach for calculating and pre-screening formation ener- 

gies/convex hulls. Our DFTB+CASM implementation allows for an efficient exploration (up to an order of 

magnitude faster than DFT) of formation energies and convex hulls, which researchers can use to probe 

other complex systems. 

© 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & 

Technology. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Point defects, such as vacancies, play a vital role in the elec- 

ronic and structural properties of semiconductor materials. These 

roperties ultimately dictate the performance of electronic devices, 

tructural alloys, and functional materials; therefore, a deep un- 

erstanding of vacancies at the atomistic level can provide a ra- 

ional path toward their improvement [1–4] . One of the most im- 

ortant quantities to characterize a defect is its formation en- 

rgy, which can, in principle, be computed with Density Func- 

ional Theory (DFT) [5,6] . Although accurate and widely trans- 

erable, DFT can be computationally prohibitive for the routine 

xploration of the numerous types of defects in material sys- 

ems. Alternatively, semi-empirical methods, such as Density Func- 

ional Tight Binding (DFTB) [7–10] , have recently emerged as effi- 

ient approaches for addressing these computational bottlenecks. 

n particular, the DFTB formalism has already been used to cal- 

ulate a variety of large systems such as metallic nanoparticles 
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11,12] , explicitly-solvated chromophores [13] , massive biological 

tructures [14] , molecules/clusters with numerous conformations 

15,16] , and immense nanostructures [17] . 

To enable fast and accurate calculations of formation energies, 

e combined DFTB with the Clusters Approach to Statistical Me- 

hanics (CASM) [18,19] software package to predict thermodynam- 

cally stable phases of materials for the first time. Specifically, our 

ew capability allows the rapid and accurate calculation of forma- 

ion energies and the convex hull (if favorable). In short, the con- 

ex hull provides a global view of the relative stabilities of struc- 

ures after the formation energies are calculated. Although com- 

utationally demanding, the calculation of formation energies and 

onvex hulls has enabled the discovery of new materials, including 

uperconducting hydrides [20–24] , metal nitrides [25] , and metal 

arbides [26] . Predicting the convex hull for general materials is 

ime-consuming since it requires the classification of a vast num- 

er of energy minima on the lattice energy surface. Software pro- 

rams, such as USPEX [27,28] and CALYPSO [29,30] have been used 

o explore the vast compositional phase space of these materials. 

ompared to other crystal structure prediction codes, the main ad- 

antage of CASM is its ability to evaluate the kinetic and ther- 
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odynamic properties of multi-component crystalline solids using 

roup theoretical techniques. 

Using this new capability, we calculate the formation ener- 

ies of various silicon carbide (SiC) and zinc oxide (ZnO) con- 

gurations to highlight the efficiency of our DFTB+CASM imple- 

entation. SiC is one of the most promising materials for high- 

emperature, radiation-resistant, power and high-speed electron- 

cs [31–34] . ZnO is an affordable, earth-abundant, wide-band- 

ap transparent conducting oxide with applications in electron- 

cs, optoelectronics, pharmaceuticals, sensors, and catalysis [35] . 

nO crystallizes in many forms, with hexagonal wurtzite (B4), zinc 

lende (B3), and cubic rocksalt (B1) being the most common. Using 

iC and ZnO as representative examples, we compare the accuracy 

nd efficiency of DFTB and DFT for predicting formation energies 

nd convex hulls of these binary compounds. 

Our paper is organized as follows: Section 2 gives a brief 

verview of DFTB, DFT, structure generation algorithm in CASM, 

ormation energies, and convex hulls. Section 3 provides compu- 

ational details, and Section 4 presents our results and discus- 

ion. Finally, we conclude with closing remarks and a summary in 

ection 5 . 

. Theory and methodology 

.1. DFTB 

Before proceeding with a discussion of our approach for evalu- 

ting the formation energy/convex hull, we briefly review the DFTB 

ormalism. DFTB is based on a Taylor series expansion of the DFT 

ohn-Sham (KS) total energy, E KS , with respect to electron den- 

ity fluctuations ρ(r) = ρ0 (r) + δρ(r ) , where ρ0 (r ) is a reference

ensity of neutral atomic species. In our work, we use the second- 

rder expansion of the KS energy, abbreviated as DFTB2 [36] . The 

nmodified KS total energy is given by 

 KS = 

occ ∑ 

i 

〈 ψ i | − 1 

2 

∇ 

2 + V ext | ψ i 〉 + E H + E xc + E II , (1) 

here ψ i are the KS orbitals, V ext is the external potential, E H is the

artree energy, E XC is the exchange-correlation (XC) energy, and E II 
s the ion-ion interaction energy. Rewriting Eq. (1) in terms of ρ(r) 

nd expanding up to second order, we obtain the DFTB energy: 

 DFTB = 

∑ occ 
i 〈 ψ i | ˆ H 0 | ψ i 〉 + 

1 
2 

∑ M 

AB γAB �q A �q B + E AB 
rep 

= E BS + E γ + E rep , 
(2) 

here the second term sums over the number of atoms, M, in the 

ystem. 

The first term in Eq. (2) , E BS , corresponds to the band structure 

nergy (i.e., the sum over the occupied orbital energies) obtained 

rom the diagonalization of the non-self-consistent DFTB Hamilto- 

ian, ˆ H 0 : 

ˆ 
 0 = 〈 φμ| ˆ T + νeff[ ρ

A 
0 + ρB 

0 ] | φν〉 , μ ∈ A , ν ∈ B , (3) 

here φμ, φν forms a minimal Slater type atomic basis ( μ and ν
re the indices of the valence atomic basis function centered on 

toms A and B, respectively), ˆ T is the kinetic energy operator, ρ I 
0 

s the reference density of neutral atom I, and νeff is an effective 

ohn-Sham potential. As shown in Eq. (3) , only two-center ele- 

ents are treated within the DFTB framework, which are explicitly 

alculated using analytical functions within the linear combination 

f atomic orbitals (LCAO) formalism. The Hamiltonian and over- 

ap matrix elements are pre-computed and stored in Slater-Koster 

SK) files for all pairs of chemical elements as a function of the 

istance between atomic pairs. Thus, no explicit integral evalua- 

ion occurs during the simulation, which significantly improves the 

omputational efficiency of the DFTB approach. The second term in 
237 
q. (2) , E γ , is the energy due to charge fluctuations, where γAB is

n analytical function of the interatomic distance, and the Hubbard 

arameter U takes into account the electron-electron interaction. 

he Hubbard parameter U is related to the hardness of the atoms 

nd controls how the electron density is distributed between the 

toms. The �q A / B term (= q A / B − q 0 
A / B 

) is the net charge of atom 

/B. The summation in the E γ term in Eq. (2) is performed over 

he number of atoms, M, in the system. The last term, E rep , is the

istance-dependent diatomic repulsive potential, which includes 

ore-electron effects, ion-ion repulsion, and a portion of exchange- 

orrelation effects. The pairwise repulsive functions are obtained 

y fitting to DFT calculations using a suitable reference structure 

nd, like the matrix elements, are pre-tabulated. By applying the 

ariational principle, we obtain the DFTB Kohn-Sham equations: 

 

B 

M ∑ 

ν∈ B 
c νi 

(
H μν − εi S μν

)
= 0 , ∀ A , μ ∈ A , i, (4) 

here the DFTB Hamiltonian is given by 

 μν = 〈 φμ| ˆ H 0 | φν〉 + S μν
∑ M 

ξ �q ξ
(

1 
2 

(
γA ξ + γB ξ

))
, (5) 

ith μ ∈ A , ν ∈ B , and S μν is the overlap matrix of the atomic 

rbitals. Because the atomic charges are dependent on the one- 

article wave functions, ψ i , Eq. (5) must be solved iteratively until 

elf-consistency is reached. 

DFTB is a tight-binding-based method and provides a reason- 

ble accuracy at a much lower computational cost compared to 

FT calculations. As mentioned earlier, the Hamiltonian and the 

verlap matrix elements H μν and S μν are pre-computed and tabu- 

ated; i.e., they are not computed during the execution of the pro- 

ram. This and the use of a minimal valence basis set can typi- 

ally lead to huge computational savings (2–3 orders of magnitude) 

ompared to full DFT. 

.2. DFT 

In Kohn-Sham DFT (KS-DFT), the electronic energy of a system 

s given by 

[ ρ] = T KS [ ρ] + E ext [ ρ] + E H [ ρ] + E xc [ ρ] . (6)

ll of the terms in Eq. (6) are a functional of the density ρ , where

 KS [ ρ] is the kinetic energy of the electrons, E ext [ ρ] is the attrac-

ive interaction between the electrons and the nuclei (also known 

s the external potential energy), E H [ ρ] is the classical (Coulomb) 

lectrostatic energy of the electronic density charge distribution 

also known as the Hartree energy), and E xc [ ρ] is the exchange- 

orrelation energy which describes exchange and correlation quan- 

um interactions. 

DFT calculations are performed in an iterative way, with the 

lectron density, ρ( � r ) , expressed as the sum of one-electron wave 

unctions, ψ i , known as molecular orbitals (MOs): 

(→ 

r 

)
= 

N e ∑ 

i =1 

∣∣∣ψ i 

(→ 

r 

)∣∣∣
2 

. (7) 

hese MOs are obtained by solving the Kohn-Sham (KS) eigenvalue 

quation: 

 

−1 

2 

∇ 

2 + V ext ( r ) + V H [ ρ]( r ) + V xc [ ρ]( r ) 
] 
ψ i ( r ) = εi ψ i ( r ) , (8) 

here V H [ ρ] and V xc [ ρ] are themselves functionals of the den-

ity (making them functionals of the MOs), which are obtained af- 

er solving the KS eigenvalue problem in Eq. (8) . As such, the KS 

igenvalue problem in Eq. (8) cannot be solved directly and must 

e calculated in an iterative fashion within a self-consistent field 
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Fig. 1. Flowchart of the structure generation algorithm used in the CASM software package to enumerate structures. 
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SCF) method. In this iterative process, a set of guess wavefunc- 

ions, { ψ i } , are used to compute the terms in Eq. (8) . This then al-

ows the calculation of a new set of { ψ i } , and the process repeats

ntil { ψ i } and the energy in Eq. (6) are converged. 

One of the key computational bottlenecks in KS-DFT is the nu- 

erous three-dimensional integrals that are evaluated in each SCF 

tep, which is extremely time-consuming. Since DFTB uses pre- 

omputed integrals in each SCF cycle, its performance can be sig- 

ificantly faster (up to 2–3 orders of magnitude) than full DFT cal- 

ulations. 

.3. Structure generation with CASM 

The algorithms in the CASM software package that enumerate 

ymmetrically distinct configurations utilize an approach based on 

ermite Normal Forms of integer matrices [37,38] . The following 

s a brief outline of the algorithm [39] , shown schemataically in 

ig. 1 : 

1) All Hermite normal form (HNF) matrices are generated for each 

superlattice of size n . 

2) The symmetry of the parent lattice is used to remove rotation- 

ally equivalent superlattices, thus shrinking the list of HNF ma- 

trices. 

3) For each index n of the superlattice, the Smith normal form 

(SNF) is determined for each HNF in the list. 

(a) A list of possible labelings (atomic configurations) is gener- 

ated for each SNF, which is a list of all k n numbers in a base

k , n -digit system. For the labels, the first k letters of the al-

phabet, ( a , b, · · · ) are used. 

(b) Incomplete labelings, where each of the k labels ( a , b, · · · ) 

does not appear at least once, are removed. 

(c) Labelings that are equivalent under the translation of the 

parent lattice vectors are removed. This reduces the list la- 

belings by a factor of ∼ n . 

(d) Labelings that are equivalent under an exchange of labels, 

i.e., a � b, are removed (for example, the labeling aabbaa is 

removed from the list because it is equivalent to bbaabb). 
238 
(e) Superperiodic labelings that correspond to a non-primitive 

superstructure are removed. This can be done without using 

the geometry of the superlattice. 

4) Labelings are removed for each HNF that are permuted by sym- 

metry operations (of the parent lattice) that leave the superlat- 

tice fixed. 

n important feature of this algorithm is that the list of possible 

abelings, generated in step (3)-(a), forms a minimal hash table 

ith a perfect hash function. All duplicate labelings in a list of N

an be eliminated and accomplished in O (N) time. Coupled with 

he group-theoretical approaches in CASM, this results in a highly 

fficient algorithm that is orders of magnitude faster than the al- 

orithm of Ferreira, Wei, and Zunger [40] . 

.4. Formation energy 

The formation energy, e f , is normalized per primitive unit cell 

f a particular atomic configuration, σ . For a binary compound AB x 

in this work, atom A is Si/Zn, and atom B is C/O), the formation 

nergy can be calculated with the expression: 

 

f ( σ ) = e ( σ ) − e ref ( x ) , (9) 

here e f (σ ) is the formation energy of configuration σ , e (σ ) is the

FT/DFTB total energy (normalized per primitive unit cell) of con- 

guration σ , and e ref (x ) is the DFT/DFTB total energies (normalized 

er primitive unit cell) of reference state with composition x . The 

nergy of the reference state, e ref (x ) , is calculated from the follow- 

ng expression: 

 

ref (x ) = e ref (x 1 ) + (x − x 1 ) 
e ref (x 2 ) − e ref (x 1 ) 

x 2 − x 1 
, (10) 

here e ref (x 1 ) and e ref (x 2 ) are the DFT/DFTB calculated total en- 

rgies (normalized per primitive unit cell) of the reference states 

ith composition x 1 and x 2 , respectively. The composition, x , can 

e calculated from the expression: 

 = 1 − ( B n / A n ) , (11) 
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Fig. 2. General workflow in our DFTB+CASM implementation for calculating formation energies and the convex hull. 

Fig. 3. Primitive unit cells used to generate the various supercells and configurations. Using the CASM software package, we generate all symmetrically distinct configurations 

with the stoichiometry Si 2 C 2 . Panels (a), (b), and (c) show the primitive cell in different orientations. Light green and grey atoms represent Si and C, respectively. The reader 

should refer to the web version of this article regarding any reference to colors used in the figure. 
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Table 1 

Initial/experimental lattice parameters of SiC (2H) and ZnO (B4). 

Structure 

Lattice Vectors ( ̊A) Lattice Angles 

a b c α β γ

SiC (2H) 3.076 3.076 5.048 90 . 00 ° 90 . 00 ° 120 . 00 °

ZnO (B4) 3.302 3.302 5.275 90 . 00 ° 90 . 00 ° 120 . 00 °
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B

S  
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r
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r

o
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e
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t

here B n and A n denote the number of C (O) and Si (Zn) atoms 

n the unit cell, respectively. A value of x = 1 implies that the unit

ell has only Si (Zn) atoms, while x = 0 implies that the unit cell

onsists of an equal number of Si (Zn) and C (O) atoms. In this 

tudy, we chose x 1 and x 2 as 0 and 1, respectively. Setting x 1 =
 and x 2 = 1 in Eq. (10) , the reference state energy, e ref (x ) , for a

omposition x simplifies to: 

 

ref (x ) = e ref (x 1 = 0) + x 
(
e ref (x 2 = 1) − e ref (x 1 = 0) 

)
. (12) 

. Computational details 

The general workflow of our calculations is depicted in Fig. 2 . 

e explore thermodynamically stable compositions for binary 

ompounds of the form A 2 B 2(1 −x ) using the following four steps: 

1) determination of the most stable crystal structure at a fixed 

omposition x using CASM integrated with DFTB, (2) calculation of 

he formation energy e f of the compound with respect to its com- 

osition at x = 0 and x = 1 , (3) repeating the same calculations by

hanging x , and (4) plotting the formation energy per fixed com- 

osition, e f vs. x . Details of each step are given below. 

.1. CASM 

To generate the configuration space for the various material 

ompositions, we start with the primitive unit cell of 2H-SiC and 

4-ZnO (the 2H prefix denotes a two-layer hexagonal symmetry 

tacking periodicity). The 2H-SiC unit cell is shown in Fig. 3 , where 

he large green atoms represent silicon, and the small gray atoms 

re carbon. The crystal structure is an AB-type covalent bond crys- 

al, and each Si atom is surrounded by four C atoms. Each 2H-SiC 

nit cell contains two Si and two C atoms. The space group of 2H-

iC is P6 mc , and the experimental lattice parameters are shown 
3 

239 
n Table 1 . B4-ZnO (Wurtzite) has a similar unit cell as 2H-SiC, but 

s not shown here for brevity. Table 1 also lists the experimen- 

al lattice parameters of the 2H-SiC [41,42] and B4-ZnO [43] unit 

ells used to generate different configurations. Both 2H-SiC and 

4-ZnO follow the AB type stacking sequence. The DFT-optimized 

iC lattice parameters are a = b = 3 . 084 Å and c = 5 . 065 Å with

= β = 90 ◦ and γ = 120 ◦. DFTB gives similar optimized lattice pa- 

ameters with a = b = 3 . 173 Å and c = 5 . 235 Å with α = β = 90 ◦

nd γ = 119 . 99 ◦. As such, the DFT- and DFTB-optimized lattice pa-

ameters match extremely well (within 0.1 Å) with the experimen- 

al parameters in Table 1 (Table S1 in the supplementary mate- 

ial gives a similar comparison for ZnO). We consider a binary 

rdering between two C/O atoms and a vacancy at the C/O lat- 

ice sites in the unit cell. All symmetrically distinct supercells and 

erivative configurations (up to a supercell volume that is 4 times 

he primitive unit cell) were generated using the algorithm de- 

eloped by Hart et al. [39,44] in the CASM code. This algorithm 

numerates superlattices and atomic configurations in a geometry- 

ndependent way using the concept of quotient groups associated 

ith each superlattice to determine all unique atomic configura- 

ions. We follow the standard procedure for calculating the forma- 

ion energy/convex hull [45] using DFT/DFTB with the CASM code. 
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Fig. 4. Formation energy convex hull for the Si-C binary system computed with DFT 

and DFTB. Panel (a) shows the DFT formation energy. Panel (b) shows the DFTB 

formation energy calculated using the SKfIV SK files. Each point corresponds to a 

different crystal structure. 
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After defining the basis and lattice vectors of the system, 

he symmetrically distinct configurations are generated using the 

ASM software package. All configurations in symmetrically dis- 

inct supercells were generated in 2H and B4 symmetries for SiC 

nd ZnO, respectively. The primitive unit cell, as shown in Fig. 3 , 

as used to generate the 401 derivative supercell configurations 

or each SiC and ZnO system. In the last panel of Fig. 2 , we calcu-

ate the total energies for each configuration via DFT and DFTB. 

.2. DFT Calculations 

Density functional theory calculations were carried out with 

he Vienna Ab Initio Software Package (VASP) code [46,47] . We 

sed projector augmented wave (PAW) pseudopotentials [4 8,4 9] , 

nd the generalized gradient approximation (GGA) exchange- 

orrelation functional, as parameterized by Perdew, Burke, and 

rnzerhof (PBE) [50] . We calculated the total energies using a 

lane-wave energy cutoff of 400 and 520 eV for SiC and ZnO, re- 

pectively. All of our calculations used the standard VASP pseu- 

opotentials for all of the atoms. We used a �-point centered 

onkhorst-Pack k-point mesh (approximately 12 × 12 × 6) for 

oth SiC and ZnO, and the total energies were found to be suit- 

bly converged with this k-point sampling. The k-point sampling 

iffers depending on the unit cell of each configuration, and the 

ASM software package keeps the mesh density constant for all 

onfigurations [51] . In all the optimizations, the geometry was re- 

axed such that all the forces were less than 0.04 eV/ ̊A. The en-

rgy convergence for the electronic degree of freedom was set to 

0 −5 eV. While performing geometry optimizations, the atomic po- 

itions, lattice parameters, and angles were allowed to relax for 

ach structure. 

.3. DFTB Calculations 

As discussed earlier, DFTB is an approximate tight-binding 

cheme with a low computational cost due to the use of param- 

terized integrals and a minimal valence basis set [36,52–57] . In 

he present study, we used the self-consistent charge formulation 

f DFTB (SCC-DFTB) in its second-order scheme (DFTB2), which in- 

ludes the second-order term in the DFT energy expansion around 

he reference density [58] . Previous studies have shown DFTB to 

e particularly well suited for describing both SiC and ZnO mate- 

ials [59–63] . In all of our SiC DFTB calculations, we used a recent

FTB parameterization that accurately reproduces a large dataset 

f DFT calculations, which includes potential energy surfaces, en- 

rgies, and forces [64] . We designate the SiC SK files from Ref. 

64] as SKfIV throughout this paper. For our ZnO DFTB calculations, 

e used standard parameters from the znorg-0-1 SK set [65] . We 

sed a similar k-point mesh as mentioned in the DFT calculations 

ection. In all of our DFTB calculations, the geometry was relaxed 

ith periodic boundary conditions such that all the forces were 

ess than 0.04 eV/ ̊A, and the SCC convergence tolerance was set 

o 10 −5 a.u. Both the DFT and DFTB calculations were carried out 

n a spin-unpolarized formalism. After optimizing the structures, 

he formation energies and convex hull plots were produced using 

ash and python scripts. 

.4. Formation energy 

As depicted in the last panel of Fig. 2 , the formation energy 

or each structure is calculated. The ‘total energy.sh’ script cre- 

tes a file that contains the optimized DFT/DFTB ground state en- 

rgy of each of the configurations. In the next step, the ‘forma- 

ion_energy.py’ python script reads the ground-state energies and 

ses Eqs. (10) and (9) to compute the formation energy of each of 

he configurations. Finally, the ‘plot_convex_hull.py’ python script 
240 
s used to plot the convex hull from the DFT/DFTB computed for- 

ation energies. In the case of SiC, we constructed the convex hull 

y connecting all the minima of the negative formation energies at 

arious compositions, x , with straight lines. 

. Results and discussion 

Using the configuration space described above, we generated 

istinct compositions up to 4 times the primitive unit cell volume, 

hich produces a total of 401 symmetrically distinct configurations 

or SiC and ZnO, each. All the structures used in this work can be 

ownloaded at https://github.com/Anshuman5/data . The DFT and 

FTB energies of all the enumerated configurations were calculated 

o obtain the formation energy using Eq. (9) . 

.1. SiC 

.1.1. Convex hull 

Fig. 4 (a) and (b) show the formation energies of various SiC 

onfigurations calculated with DFT and DFTB, respectively. Al- 

hough the DFT and DFTB calculations find different minima on 

he convex hull plot, the results match qualitatively. DFTB predicts 

 minimum at composition x = 0 . 75 while DFT has a minimum

earby at x = 0 . 875 . The two minima structures in the DFTB con-

ex hull plot at x = 0 . 75 and x = 0 . 875 have a formation energy

ifference of 0.025 eV. This small energy difference is due to the 

pproximations in the SK parameters inherent to the DFTB formal- 

sm. 

https://github.com/Anshuman5/data
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Fig. 5. Comparison of SiC structural parameters (located on the convex hull) after 

optimization with (a) DFT and (b) DFTB (SKfIV), visualized along lattice vector � c . 

Bond lengths are in Angstroms, and light green and grey atoms represent Si and C, 

respectively. (The reader should refer to the web version of this article regarding 

any reference to colors used in the figure.) 

m

t  

p

r

b

i

u

t

a

c

c

m

4

i  

D  

t  

a

v

t

Table 2 

Comparison of optimized lattice parameters of the minima structure calcu- 

lated with DFT and DFTB for SiC. 

Method 

Lattice Vectors ( ̊A) Lattice Angles 

a b c α β γ

DFT 6.15 6.15 6.16 121 . 39 ° 97 . 24 ° 110 . 62 °

DFTB (SKfIV) 6.27 6.27 6.40 119 . 38 ° 99 . 60 ° 109 . 24 °
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The most probable reason for this small discrepancy in the for- 

ation energy is the parameterization of the repulsive DFTB po- 

ential between the Si and C atoms in the SKfIV SK files. The re-

ulsive potentials in the SKfIV SK files result in a much stronger 

epulsion between the Si and C atoms, increasing the bond length 

etween the atoms in the structures, which alters their energet- 

cs. A similar phenomenon was also observed in a previous study 

sing TiO 2 DFTB SK files [66] . Nevertheless, our results show that 

he DFT and DFTB formation energies for SiC are similar; if more 

ccurate results are desired, configurations near the convex hull 

ould be first down-selected via DFTB and subsequently refined/re- 

alculated with DFT to improve their accuracy (which would be 

ore efficient than computing all 401 structures with DFT alone). 

.1.2. Structure comparison 

The most stable crystal structure obtained via DFT and DFTB 

s depicted in Fig. 5 . DFTB predicts a minimum at x = 0 . 75 while

FT gives a minimum nearby at x = 0 . 875 . The two minima struc-

ures in the DFTB convex hull plot at x = 0 . 75 and x = 0 . 875 have

 formation energy difference of 0.025 eV. As discussed in the pre- 

ious section, this discrepancy in the minima for the DFTB forma- 

ion energy results from approximations in the repulsive potential 
241 
etween the Si and C atoms in the SKfIV SK files. Moreover, the 

rystal structures at x = 0 . 875 obtained via DFT and DFTB show 

he same P1 symmetry, which consists of eight Si atoms and one C 

tom in the unit cell (see Fig. 5 ). Since both the DFT and DFTB cal-

ulations correctly predict the same crystal structure and relative 

atio of Si/C at x = 0 . 875 , our results show that DFTB can be em-

loyed as an efficient computational approach tool for calculating 

nd pre-screening formation energies. 

Fig. 5 compares the DFT and DFTB optimized structural parame- 

ers of the most stable configurations at the convex hull minimum 

ocated at x = 0 . 875 . Two types of Si atoms exist in the unit cell:

ne that is bonded to only Si atoms and another which is bonded 

ith one C atom. Each Si and C atom has a coordination number of 

. As can be seen in Fig. 5 (a), the Si-C bond length ranges from 1.93

o 2.38 Å in the DFT-optimized structure. Fig. 5 (b) shows the bond 

engths between various Si and C atoms of the DFTB-optimized 

tructure. DFTB predicts slightly longer bond lengths for almost all 

he Si-C bonds, which on average are longer by 0.06 Å compared 

o DFT calculations. Table 2 compares the optimized lattice pa- 

ameters of the minimum structure calculated with DFT and DFTB. 

FTB overestimates the optimized lattice parameters and predicts 

lightly longer lengths for � a , � b , and 

�
 c . 

As stated earlier, the discrepancy in the structural parameters 

s due to the parameterization of the repulsive DFTB potential be- 

ween the Si and C atoms in the SKfIV SK files. The repulsive po- 

entials used in the SKfIV SK files result in a much stronger re- 

ulsion between the Si and C atoms which increases the bond 

ength between the atoms in the structures. Previous work has 

lso shown that DFTB predicts longer lattice parameters for sys- 

ems containing C atoms [67] . 

.2. ZnO 

.2.1. Formation energy 

We now proceed to ZnO, which is an even more complex ma- 

erial but shows more accurate results between DFT/DFTB. The 

urtzite (B4) structure is the most stable form of ZnO at am- 

ient conditions in nature [68] . The zinc blende (B3) structure 

f ZnO has a less stable cohesive energy than the B4 structure, 

nd is, therefore, energetically unfavorable at zero temperature and 

ressure [69] . As such, we enumerated various ZnO configurations 

tarting with the B4-ZnO unit cell. We obtain a significant perfor- 

ance improvement for ZnO structures optimized via DFTB (more 

etails on efficiency are discussed in the next section). It is inter- 

sting to note that both the DFT and DFTB calculations do not find 

 convex hull in the formation energy plots of the Zn 2 O 2(1 −x ) bi- 

ary compounds. As shown in Fig. 6 , the calculated formation en- 

rgies are all positive, showing no stable minima predicted at any 

omposition x . A previous study reported similar findings of pos- 

tive formation energies when oxygen vacancies were introduced 

n the ZnO lattice [70] . Specifically, these previous studies showed 

hat defects often induce occupied states in the bandgap and in- 

rease the formation energy [71–74] . 
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Fig. 6. Formation energy of the ZnO binary system obtained from DFT and DFTB. 

Panel (a) shows the DFT formation energy, and panel (b) shows the DFTB formation 

energy calculated using the znorg-0-1 SK files. Each point corresponds to a different 

crystal structure. 
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It is interesting to note that the formation of ZnO ( Fig. 6 ) has a

arger error than SiC ( Fig. 4 ). This larger error is due to the znorg-

-1 SK files [65] being parameterized from the bandstructure ener- 

ies, unlike the SiC SK files, which are parameterized from forma- 

ion energies [64] . 

.3. Efficiency analyses for DFT and DFTB 

In this section, we give a detailed analysis of the computational 

imings and efficiency of DFT and DFTB. Fig. 7 compares the wall 

ime per SCF iteration step (WT-SCF) as a function of the num- 

er of electrons in various ZnO configurations. As the number of 

lectrons increases, the WT-SCF increases rapidly for both DFT and 

FTB. For example, the DFT WT-SCF for a 30-electron ZnO con- 

guration is around 16 s, whereas a 120-electron configuration is 

oughly 134 s. Fitting the DFT WT-SCF data to a cubic polynomial 

ives a high R 2 correlation coefficient of 0.92, indicating an O (N 

3 ) 

caling, where N is the number of electrons. This scaling can be 

ttributed to matrix diagonalization in KS DFT, which is an O (N 

3 ) 

rocess, where N is the size of the matrix. Similarly, fitting the 

FTB WT-SCF data gives an O (N) linear scaling with an R 2 of 0.91.

or all configurations, the DFTB WT-SCF is less than 6 secs, which 

s significantly faster than DFT. As can be seen from Fig. 7 , the

FTB WT-SCF for a ZnO configuration with 138 electrons is an 

rder of magnitude faster than DFT. It is worth mentioning that 

lthough the DFTB WT-SCF is more efficient than DFT, DFTB ge- 

metry optimizations may take more SCF cycles compared to DFT, 

hich may result in a small loss in efficiency. 
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.3.1. Computational timings for SiC 

Fig. 8 (a) and (b) compare computational timings for geometry 

ptimizations of various Si 2 C 2(1 −x ) structures using DFT (VASP) and 

FTB (DFTB+). In general, the DFTB calculations take significantly 

ess time compared to DFT, and Fig. 8 (b) shows that DFTB can be 

n order of magnitude faster than DFT in some cases. For most 

onfigurations, the DFTB calculations required more SCF cycles for 

eometry optimization compared to DFT; however, the total com- 

ute time for DFTB is still significantly smaller. 

.3.2. Computational timings for ZnO 

Fig. 9 compares wall times for geometry optimization for var- 

ous Zn 2 O 2(1 −x ) binary compounds calculated via DFT and DFTB. 

s in the case of SiC, Fig. 9 (b) shows that DFTB is an order of

agnitude faster than DFT in most cases. It is important to note 

hat DFTB is almost 40 times faster than DFT for Zn 2 O 2(1 −x ) binary 

ompounds (see Fig. 9 (b)), whereas the maximum performance en- 

ancement of DFTB is only 10 times for Si 2 C 2(1 −x ) . In general, as 

he number of electrons in the system increases, we show that 

FTB exhibits more performance gains than conventional KS DFT 

alculations. 

Finally, Fig. 10 compares the total time (sum of individual wall 

imes) for the geometry optimization of Si 2 C 2(1 −x ) and Zn 2 O 2(1 −x ) 

inary compounds. For Si 2 C 2(1 −x ) , the total time for geometry op- 

imization of all 401 configurations is around five days for DFTB, 

hereas the DFT calculations require nearly ten days. The differ- 

nce in performance between DFTB and DFT for Zn 2 O 2(1 −x ) is even 

ore significant—DFTB geometry optimizations take approximately 

 days, whereas the DFT calculations take nearly 18 days (more 

han 3 times longer than DFTB). As mentioned previously, larger 

ystems such as ZnO (which contain more electrons), scale more 

avorably with DFTB, resulting in speedups that can be orders of 

agnitude faster than conventional DFT methods. 

. Conclusion 

In closing, we have interfaced DFTB with the CASM software 

ackage for the first time to enable routine and efficient calcula- 

ions of formation energies and convex hulls. Our extensive calcu- 

ations show that DFTB can be used as an efficient screening tool 

o compute the numerous formation energies (and convex hull if it 

xists) of complex materials. To highlight the efficiency and accu- 

acy of our approach, we calculated and compared the formation 

nergies of SiC and ZnO with both DFT and DFTB. We find that the 

FTB approach enables extremely efficient calculations of forma- 

ion energies in a completely unbiased manner to predict low-lying 

etastable phases over the entire composition space. By compar- 

ng the convex hull/formation energy from both approaches, we 

ound that DFTB gives similar trends as the DFT calculations. Fi- 

ally, we performed an extensive benchmark of the computational 

imings for both DFT and DFTB and found that the DFTB calcula- 

ions can be an order of magnitude faster (larger systems give even 

igher computational efficiency). Moreover, we show that DFTB 

ives accurate results and can be used as an efficient computa- 

ional approach for calculating and pre-screening formation ener- 

ies/convex hulls. In summary, our DFTB+CASM implementation 

llows for an efficient exploration (up to an order of magnitude 

aster than DFT) of formation energies and convex hulls, which re- 

earchers can use to routinely probe other complex systems. 
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Fig. 7. Comparison of DFT and DFTB wall times per SCF iteration step as a function of the number of electrons in various ZnO configurations. Each vertical bar value was 

calculated by averaging multiple configurations having the same number of electrons. 

Fig. 8. Comparison of wall times for geometry optimization of various Si 2 C 2(1 −x ) 

compositions calculated via DFT and DFTB. Panel (a) shows the wall time for op- 

timizing each configuration using DFT. Panel (b) shows the ratio between the DFT 

and DFTB wall times for a geometry optimization of each configuration. Each point 

corresponds to a different crystal structure. 

A

t

F

Fig. 9. Comparison of wall times for geometry optimization of various Zn 2 O 2(1 −x ) 

compositions calculated via DFT and DFTB. Panel (a) shows the wall time for op- 

timizing each configuration using DFT. Panel (b) shows the ratio between the DFT 

and DFTB wall times for a geometry optimization of each configuration. Each point 

corresponds to a different crystal structure. 
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Fig. 10. Comparison of DFT and DFTB total wall times for geometry optimization of 

all SiC and ZnO configurations. The DFTB calculations used the SKfIV and znorg-0-1 

SK files for SiC and ZnO, respectively. 
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